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CHARGING OF WEAKLY CONDUCTING PARTICLES OF A SUSPENSION ON 
COLLUSION WITH BOUNDING SURFACES* 

L. T. CHEPNYI 

The change of electric charge of weakly conducting particles in flowing suspension 

on their collision with walls is determined. .& boundary condition for electric 

current density in rarefied suspensions of weakly conducting particles in noncon- 

ducting gas at impenetrable walls is obtained. 

1. Boundary condition for the electric current density at impenetrable 
walls. In investigations of charged particle motion within the fsame work of continuous med- 

ium mechanics /1,2/ it is necessary to specify the boundary condition for the electric cur- 

rent density. Let us consider the derivation of that condition for a rarefied suspension 

consisting of a nonconducting gas and electrically charged particles whose conductance al- 

though fairly small (in the sense indicated below), is nonzero. 

It was shown in /3,4/ that, as the result of suspended particles collision with a solid 

wall, their charges may change. In particular, initially uncharged particles may become 

charged, i.e. electrified. When the change Ae, of the electric charge of one particle is 
known, it is possible to establish the boundary condition for the electric current density j 

of the form 
(jv)=-_g(v)AFp(vv)dv (1.1) 

where Y is the outward normal to the wall that represents the bounding surface, v is the part- 

icle velocity, and g(v)is a function of velocity distribution of suspension particles imping- 

ing on the wall (for which (v v)< 0). In the absence of scatter of velocities of particles 

impinging onthewall we have g(v) = II-~ (s - v-), where n- and v-are the concentration and 

velocity of particles in the stream impinging on the wall. When the effect of the electric 

field on the motion of suspension particles can be neglected, function g(v) is determined by 

solving a purely mechanical problem. If, furthermore, the velocities of particles impinging 

on the wall are uniform, it is sufficient to determine t2- and v-for obtaining s(y). 

Let us consider the change he, of electric charge of a single particle at its impact on 
a metal wall, on the usual assumption that the duration of contact of particle and wall is 

considerably longer than the relaxation time of the potential of the latter. It is therefore 

possible to assume in the calculation of Ae, that the wall potential is constant (below we 

assume it to be zero). 

2. Distribution of the electric charge and field in a particle prior to 
its impact on the wal.1. Let the particle conductance be determined by the presence in 

it of Nvarieties of electric charge carriers, such as ionsor, inthe caseofsemiconductorspartic- 
les,electron and vacancies /5,6/. We assume the concentration of charge carriers to be fairly 

small so that their mobility and diffusion coefficients can be linked by Einstein's relations 

/5,6/, and that the particle conductance 0 satisfies the formulas (in Gaussian system of units) 

(2.1) 

where eifl)i, and niO are, respectively, the charge, the diffusion coefficient, and the charact- 

eristic concentration of charge carriers of the i variety, D is the characteristic value of 

coefficients Di, T is the absolute temperature, 1% is the Boltzmann constant, and ap and d 

are, respectively, the permittivity and the Debye radius of particle material. 
Let Eo be the electric field intensity at the wall in the absence impinging particles. 

In rarefied suspension se usually coincides with the electric field intensity defined by 
averaging over a physically infinitely small volume containing a fairly large number of sus- 

pended particles. Let us determine the concentration of charge carriers at the surface of a 

spherical particle carrying the.over-al.1 electric charge ep immediately before its collision 
with the wall under the condition 

(2.2) 

where u is the absolute velocity of a particle approaching the wall, R is the particle radius, 

and &sand TE are, respectively, the characteristic length and time of change of the electric 
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field mean intensity in the suspension. 

The first of inequalities (2.2) implies that the time a particle remains close to the 

wall (-R/a) is considerably shorter than the relaxation time r, of the electric charge dis- 

tribution in the particle. Hence it is possible to disregard the effect of the wall on the 

charge carrier distribution in the particle prior to collision. The second and third of 

equalities (2.2) show that the relaxation of the electric charge in a particle is many times 

faster than the change of electric field intensity which acts on the particle. It is, thus, 

possible for the charge carrier distribution in the particle immediately before collision to 

be the same as in the electrostatic problem of the charged particle in a constant uniform 

external field of intensity I?, in the absence of a wall. 

Note that the first and second of conditions (2.2) imply that l,>?r,afi and, consequent- 

ly, the electric field intensity E along the section of particle trajectory of length of the 

order of ur,>>R preceding the impact differs only little from the electric field intensity 

E, directly at the wall in the absence of a particle; for an infinite flat wall E= E, in 

the absence of any other bodies. The fourth of inequalities (2.2) implies that almost the 

total electric charge is concentrated in the thin surface layer of thickness -d.. 

When determining the concentration nis of charge carriers on the surface of a particle, 

it is admissible to set R = 00 and use the formulas for the half-space /5,6/ 

(2.3) 

II, (co) = 0, - Ep$' (0) = E (E,'v) s & E' (2.4) 

where E is the permittivity of the carrier phase, E.' is the electric field intensity on the 

outside surface of the particle in the previously mentioned electrostatic problem, and v is 

the inward normal to the particle surface. vectorsE,'and v are obviously assumed to be at 

the same point of particle surface at which ni, is calculated. Function 11,(z) which is 
completely determined by the second of Eqs. (2.3) and boundary conditions (2.4) may be 
taken as the distribution of electric potential in the half-space (z> 0) at 
whose surface ( at z < 0) the electric field intensity-is EC and (when E'> 0) is 
oriented along the z-axis to the half-space inside. For a spherical particle with d&R 
the quantity E' defined above is readily obtained with the use of the formula for perfectly 

conducting particles /7/ (for the same R, e,,, and I&) and is related to the surface charge 
density 4 on it by the formula 4nq = - E&T’. At the contact point of particle and wall 

E' = 3 E. - ep / (E R2) (2.5) 

The second of Eqs. (2.3) has a first integral which in conformity with the first of con- 

ditions (2.4) can be written thus: 

(2.6) 

Formula (2.6) with allowance for the second of conditions (2.4) enables us to determine 

the dependence of Q(O) on E'which at the contact point of particle and wall is elementary 

defined in terms of E, and ep with the'use of equality (2.5). Then the first of equalities 
(2.3) determines the charge carrier concentration at the contact point of the particle surface 
in terms of Eo and eP. 

Let us consider two examples. 

Example 1. Let the particles represent a semiconductor with electron or vacany extrin- 

sic conductance (charge carriers are electrons or positively charged vacancies). The implicit 
dependence of$(O)on E' is of the form 

[ ( exp &$++gq (2.7) 

where e is the electron charge (e < 0). ,X0 is the density of electrons or vacancies of conduct- 
ance in a particle when ep= E,=O, and the upper sign corresponds to electron conductance 
and the lower to that of vacancies. If IeQIekT, formula (2.7) is readily solved for o(O) by 
substituting a linear function for the exponent. As the result, we obtain for q(O) and elect- 
ron or vacancy concentrations "TS on the particle surface the following formulas: 

where E’ is determined at the contact point by formula (2.5). 

Example 2. Let the particle have binary ion conductance (positive and negative ions of 
charge carriers) with equal absolute values of ion charges. The dependence between q(O) and 
~:'is then of the form 
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1 e 2 
T -E’ ( 1 EP (2.8) 

where n" is the concentration of positive or negative ions when ep= E,= 0, and v represent 
the charge numbers of positive and negative ions. Solving equality (2.8) for a, we obtain 
for it an expression in terms of E' 

a=f/lfAa+A, A G -‘I&E (2nepnokT)-L” (2.9) 

For the determination of negative and positive ion concentration (nTs) on the particle 
surface we now have the formula 

n .~=..exll(+~)'".~~z=n~(V1_4)ni? 

and, as implied by equalities (2.5) and (2.9), at the point of contact 

A = ‘I, (2nspn”KT)-‘in (ep 1 R2 - GEE,) 

Let us determine the projection on v of the electric field intensity E, between the part- 

icle and wall immediately before the collision, i.e. at the point of particle and wall contact. 
Vector v then obviously coincides with the outward normal to the wall. The quantity E, can 

be represented in the form of the sum 

E,, = 2 (E’ - E,) + E,, (2.10) 

where El-E0 is the projection on Y of the intensity of the electric field generated by a 

particle whose electric charge is distributed as in the above electrostatic problem of a 

particle in the external field E, and carrying the charge ep. The multiplier 2 is introduced 
here to account for the electric field generated by the particle electrostatic image relative 

to the wall surface which in the investigation of separate particles may be assumed flat. The 
last term in (2.10) represents the contribution to E ui of the electric field of intensity E,, 
which is external relative to the particle. Now, using for E’ the expression (2.5), we rep- 

resent formula (2.10) in the form 
2PP 

SW = SE,- T (2.11) 

Let us also determine the projection on v oftheelectric field of intensity E, inside the 

particle at the point of its contact with the wall. Since EKES- E&. hence, using (2.11) we 
obtain 7 

SS=3ER0-- 
EpR' 

(2.12) 
EP 

The described calculation of the electric charge distribution and field in a particle is 

approximate and valid only when conditions (2.2) are satisfied. Generally, the problem is to 
be considered in rigorous formulation which requires the solution of general equations of 

diffusion for charge carrier concentration and of Maxwell equations for the electric field. 

3. Formula for current density for charging a single particle. Let US assume 
that the particle is charged at impact on a wall as the result of interaction of the latter 

with charge carriers of some single variety r(l <r < N). This means that the number of 
carriers of the rvariety in the particle may change owing to the interaction with the wall, 

while the number of charge carriers of any other variety i +r remains constant. 
In the above examples such situation corresponds to cases in which: 1) exchange of elect- 

rons between the wall and particle can take place (example 1 in the case of electron conduct- 

ance), 2) the wall can absorb positive vacancies from the particle or impart to it such vacanc- 

ies (example 1 in the case of vacancy conductance), and 3) ions of one variety may be dis- 

charged (or bound) or, conversely, ions of a new variety (positive or negative, example 2) may 
be generated. 

Let furthermore the diffusion of charge carriers of the I' variety be the restricting stage 

of the particle charging process. This enables us to assume that during the whole time of 

collision duration the relations 

are satisfied at the contact interface of particle and wall. In these formulas ?li is the con- 

centration of charge carriers of the i variety,E? is a component of the electric field intens- 

ity E, and the Cartesian system of coordinates zgz has its z-axis directed along the out- 

ward normal to the wall, and the coordinate origin located at the point of contact. The con- 

stant n,, which may depend on T and B,, is an effective parameter representing physical 

properties of the wall. Because of this, the boundary condition defined by the first of equal- 

ities (3.1) is on the whole approximate. In precise formulation it is necessary to take into 

account also the motion of charge carriers in the wall, by specifying the conditions at the 

particle-wall surface at contact. If charge carriers of the I' variety participate in the 

reaction at the wall, whose rate is infinitely high, then strictly II,, mm 0. 
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Concentration nj and the electric field potential 'p satisfy 

diffusion and the Poisson's equation 

the equations of electro- 
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Am=-$-zCei(ni-nn,"), E=-Vq (3.2) 

where t is the time counted from the instant of impact of particle on the wall. 

The kind of distribution of concentration ni for t,<O was defined in the preceding 

Section. It represents the equilibrium state for an isolated particle in the external field 

E,. Near the wall that distribution is evidently unstable. It changes in the course of 

the collision /duration/ time t, even when the number of charge carriers of any variety is 

not changed by interaction with the wall, and consequently there is no charging (in that case 

the second of equalities (3.1) is valid for all i, including i y r). However the indicated 

variation of ni during time t can be neglected, since usually r$ R/u /8/. From (2.2) we 

have 
E 

T<T---‘, (3.3) 

which shows that the collision time is considerably shorter than the relaxation time of the 

particle electric charge. Because of this, the purely electrostatic effect of the wall on 
charge carrier distribution in the particle during collision is small. 

The concentration n, may also vary as the result of change of the number of charge car- 

riers of the r variety during their interactionwiththe wall (the concentration n, on the wall 

is, then, defined by the first of equalities (3.1)). In what follows we consider the case 

when at the instant of collision termination a noticeable change of concentration n, occurs 
only in the boundary layer inside the particle (close to the contact surface). The thickness 

6 of that boundary layer satisfies the ineqalities 

6 Q d, 6 < re 3.4) 

where r, is a characteristic dimension of the contact area during the particle impact on the 

wall. For re we have the estimateJe2-Rut /S/. The expression for 6 in terms of the problem 
parameters is given below. 

In the problem of particle charging by the change of the number of its charge carriers 

of the r variety which interact with the wall during collision, the characteristic values of 

variables 5, y,z,t and ni are equal rcr rc, 6, T, and ais- We introduce therefore the dimen- 
sionless parameters, separating the quantities 

Di, ei, X, Y, z, t, ni, 'P 
according to their characteristic values D _D,,e,,r,,r,.,6,7.nis, and h-l'/+, where the diffus- 
ion coefficient of charge carriers of the rvariety is taken for D. 

Representing the system of Eqs. (3.2) in dimensionless form and neglecting terms of order 
6" Id2 and 62 1 rC2, for the concentration n, we obtain the equations 

$!-$($+$$=o, $=o 
1 

(3.5) 

where the subscript r is henceforth omitted, and the asterisk denotes the normalization opera- 
tion. Boundary conditions for system (3.5), as z*+(x) are the conditions of asymptotic 
merging of values of concentration n and electric field intensity inside the boundary layer 

with time independent quantities n(z)and E,(z) outside the boundary layer, as 2 -0 (suitably 
normalized). The latter coincide with the concentration n, (R,, %l <anA the electric field 
intensity E,(E,,ep) at the point of contact, which were defined in the preceding Section by 
equalities (2.2)- (2.4) and (2.12). Hence the following conditions at infinity: 

n* = 1, -@*/a~.* = erEs 6 I (kT), z* -f CO (3.6) 

At z* = 0 the boundary conditions for system (3.5) are defined by the first of Eqs. (3.1) 

and the established in Sect.1 condition of zero potential of the wall. In dimensionless quant- 
ities these conditions at the wall are of the form 

n* = n,l n,, Cp* = 0, z* = 0 (3.7) 

The kind of distribution of charge carriers in a particle immediately before collision, 
established in the preceding Section, implies that at t = 0 the noticeable change of concentra- 
tion n in terms of coordinates occurs in the particle surface layer of thickness d, with the 

characteristic length of variation of ?L along the normal to particle surface and along the 
latter are, respectively equal d and R. Hence when 

6 <d, re < R (3.8) 

concentration n at the instant of time 1 = 0 inside the boundary layer of thickness -6 may 
be considered constant and equal to n,(E,,e,,) at the contact point immediately before collis- 
ion, as determined in the preceding Section. Consequently, neglecting the terms --6ld, - r,lR, 
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the initial conditions for system (3.5) can be specified thus: 

n*--1, t*=Cj (3.9) 

Note that the first of inequalities (3.8) follows from conditions (3.4) and the second is 
always satisfied, if the particle sustains small deformations at impact. 

From the second of Eqs. (3.5) and the second of boundary conditions (3.6) we have 

'?@ i W = - erEs 6 i @T) 

Substituting this expression for the derivative of q * into the first of equalities (3.5) and 
reverting to dimensional variables, we obtain the equation 

where Vis the projection on the z-axis of the velocity of the ordered motion of charge 
carriers of the r variety induced by the electric field. The initial and boundary conditions 
for Eq. (3.10) are, as implied by equalities (3.6)- (3.91, of the form 

n (0, 2) y= II,. t2 it, 00) 7 Ii,, n (L 0) :=- n,, (3.11) 

The density of the electric charging current i flowing from the contact area to the 
particle is determined by the formula 

i (t) = (- e,D an I iiz + 2 e,Dn x E,);=, m-z - e,D(an 1 d z)~=~ + 2 e,Dq, x E,, x = e,E, / (2 kT) (3.12) 

in which the second of equalities (3.1) and boundary conditions n(n= n,) for concentration 
at the wall are taken into account. 

Let us determine the derivative ii,li dz appearing in this equality by solving Eq. (3.10) 
using the Laplace transform. Let N(p,z) be the image of function II (1, 2). Then if follows 
from Eq. (3.10) and conditions (3.11) that function N(p,z) satisfies the relations 

pN - n, + VdN i dz -. DdZN I dz2 = 0. N (p, 0) = 12, f p, 12’ (p, CQ) = n, f p (3.13) 

The solution of problem (3.13) is of the form 

We calculate the derivative (d!V i&),,~ and, using tables of Laplace inverse transforms, 
obtain (dn i dz),,, , and from equality (3.12) the final formula for the determination of current 
density 

(3.14) 

Let us consider the expression for the quantity (s in terms of the problem parameters. As 
indicated above, the concentration of charge carriers of the r variety on contact of the 
particle with the wall changes at the contact surface by n,, -- n,, as the result of their in- 
teraction with the wall. Owing to the diffusion process this perturbation propagate toward 
the inside of the particle. If there is no electromagnetic field (E, = 0) in the contact 
region, then obviously, the noticeable perturbation of concentration II at the instance of 
the particle-wall contact severance is concentrated in the diffusion boundary layer of thick- 
ness fi -r/'& (we recall that the case when 6 satisfies inequalities (3.4) is considered 
here). When e$,>O, the electric field contributes to the propagation of perturbations of 
concentration n from the contact area into the particle, since it acts on charge carriers of 
the r variety with a force that is oriented away from the wall. It follows directly from Eq. 
(3.10) that in this case the perturbation of concentration n would have propagated under the 
action of the electric field only up to the instance of collision end over a distance 1-r --: 

e,DE, 7 I (kT). For 6 we, thus, have the estimate 

6 - mas (e,DE, 7 i (kT), 1/DT), e,E:, =_ 0 (3.15) 

If e,B,< 0 , the electric field impedes the propagation of perturbations of concentration II 
from the contact surface into the particle (since a force directed toward the wall acts on 
charge carriers of the r variety) and, consequently, fi f V'K Moreover, in this case Eq. 
(3.10) implies that even when the collision duration is infinite (t = oo), the noticeable 
perturbation of concentration n is concentrated in the stationary (drz / at = 0) diffusion 
boundary layer, as t+cm. Its thickness 8, can be determined without solving Eq. (3.101, 
using the condition that during the time T ’ in which charge carriers of the I variety pass, 
under the action of the electric field force, the distance 6,, and their mean square shift 
produced by diffusion is exactly equal 6_%, i.e. 

6 m 2 = Dr', -c' := S, ! 1 V 1, V == e,DE, I (/i.T) 
fn this case the final estimate of 6 is obviously of the form 
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6 - min(6, = kT / I erEs I, l/E), erEs < 0 (3.16) 

When E, = 0, estimates (3.15) and (3.16) are, as expected, equal, yielding &i--)/07. 

Formula (3.14) for i (t) is simplified when 1% 1 l/z< 1 or Ix 1 l/E>l. We have 

i 

(llw-%)/GE, IxIfE<l 

f (t) 
rD= 2xn,, xJfE>i (3.17) 

't 
2xn,, -%X1/07>> 

4. The expression for Be,. When function i (t)is known, Aep can be obviously deter- 

mined using formulas 
T(r) 

he, = l Aq(r)ds, Aq(r)= 1 i(t)& (4.1) 

=, 0 

where Z, is that part of the particle surface (and its area) which is in contact with the 

wall at impact, ds is an element of surface Z,, Aq(r)& is the electric charge acquired by 

the particle as the result of contact with the wall over the surface element ds at point 

r~ Z,, and r(r) is the duration of contact at point r. Formula (4.1) for Ae, was derived 

on the assumption that the mechanical and electrical contacts between sections of particle and 

wall surfaces coincide. In this way the partial neutralization of the particleelectriccharge, 

due to gas discharge which can occur at particle rebound from the wall /9/, is neglected. 

This is valid for fairly small particles for which the striking of an arc is difficult /9/. 

The simplest way of taking into account the gas discharge at the instant of contact breaking 

is to assume that its effect limits the electric field intensity E, by some limit quantity 

E, . Taking into account the electric field generated by the charge and acquired by a 

particle, as the result of its contact with the wall, we obtain for the electric field intens- 

ity B, the formula 

E; = E,, -- 4 ne-'A q (4.2) 

where E,,, is defined by equality (2.11). Formulas (4.1) hold for I E: I < E, I but, if their 

application to the determination of E, results in the inequality 1 Ez I > E, r it is necessary 
to substitute (Rign ET) E+ for E,,, after which Aq is obtained from (4.2) by elementary cal- 

culations. 
The collision parameters Z, and r(r) in the expression for Ae, depend on the particle 

approach velocity u to the wall. For a normal elastic impact of a spherical particle they 

can be determined by the formulas /8/ 

where p is the particle mass density, Y‘, and E,,“(Y,,~,E,.~) are, respectively, the Poisson co- 

efficient and the Young modulus of the particle (wall), and r is the distance between the 

center of contact area and point rEZ,. This shows that Ae P depends on the particle approach 

velocity to the wall. The formulas obtained above for Ae, and i (t) indicate that this depend- 

ence can be fairly complex. The particle approach velocity (u) to the wall is determined by 

the flow of suspension as a whole. Velocity u can be calculated in many instances independent- 

ly of the problem of charging particles. When the particle approach velocity to the wall is 

known, then, using the derived here formulas for Ae,, and formula (1.11, it is not difficult 

to determine the charging current at the boundaries. 

As an example, let us consider the charging of aerosol particles of ice (hail, snow) by 

collision with the surface of a metal body moving in clouds or precipitations. For pure ice 
particles of binary ion conductance we have: Ep L 72, e = rt1.6.10_'" c, d .= IO-” m, Is = 4.10-7 ohm. 

m-l, X~ e,,i(4noi = l.fi.lO-" s , U E 4zoS / E,, = ti.lO-lo m2/s, ,<- e K&T (8n&Pl = 4 .1019 mS3, E P y = 3 .iu!’ N/m2 and 
T1' = u.3. 

In the eleastic collision of an aerosol ice particle with the surface of a metal body 

the following basic characteristic parameters obtained from (4.3) apply at impact (for R- IF4 

m, and i-- IO m/s) : Ii, 1‘ = 10-S s, r : !1 .I(,-’ s, I, = 3.1u-6 m, rc := 1/Z = 1.5.10-5 m, I< =- ~.lO-'" m 2 , 
and vTiii_~ Z.l(JJ"s. With their use we can readily verify that in the considered case inequalit- 

ies (2.2), (3.4), and (3.8) are in fact satisfied, when 1,s IO-* m, us > IO--" s, and 6 - l/G. 
These relationships are satisfied, since length Is is usually of the order of the radius of 

the body surface curvature (-1 m), and the time TE- (si v- II)-’ s. Moreover, for the above 

basic parameters we have 1 rE, I 1/h I (PhTI < 1 , even when the electric field intensity attains 
its disruptive value of 10GV/m. Consequently, from formulas (3.15) and (3.16) we have 6--1/G. 

Substituting in the integrals of (4.1) for i(t) first expression in (3.17) (since JHI~EE 
IPE,[~/~I (?AT)< ii and integrating with allowance for (4.3), we obtain 
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(4.4) 

where C(niz)= 0.X is the value of the Frenel integral, and ~3 is that defined in Sect.2 

(example 2). If there is no electric field on the body surface and the aerosol particles 

are not charged, then n,= no, and for the obtained values of ii.,% and I/ur for ?lw = 0 and 
e > 0 , we have AQ = --1O_l"C. As the result of charging aerosol particles, the charge of the 

metal body and the electric field intensity at its surface increase with the consequent de- 

crease of concentration n3 in comparison with # and some lowering of density of the electric 

current j flowing to the body. Formula (1.1) enables us to estimate the order of j. For 
example, when a body moves at velocity of 100 m/s in cumulonimbus clouds in which the aerosol 

particle concentration fz-:~ 108 m-3 and their radius I! = i0-' m, we have i N -&X21 = IP .41m2. 

Such currents are, in fact, observed in flights in clouds and precipitations. 

The author thanks L. I. Sedov and V. V. Gogosov for helpful discussions. 
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